3.336 \(\int \frac {1}{x^3 (d+e x^2) \sqrt {a+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=218 \[ \frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 a^{3/2} d}+\frac {e^2 \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 d^2 \sqrt {a e^2-b d e+c d^2}}+\frac {e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {a} d^2}-\frac {\sqrt {a+b x^2+c x^4}}{2 a d x^2} \]

[Out]

1/4*b*arctanh(1/2*(b*x^2+2*a)/a^(1/2)/(c*x^4+b*x^2+a)^(1/2))/a^(3/2)/d+1/2*e*arctanh(1/2*(b*x^2+2*a)/a^(1/2)/(
c*x^4+b*x^2+a)^(1/2))/d^2/a^(1/2)+1/2*e^2*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x^2)/(a*e^2-b*d*e+c*d^2)^(1/2)/(
c*x^4+b*x^2+a)^(1/2))/d^2/(a*e^2-b*d*e+c*d^2)^(1/2)-1/2*(c*x^4+b*x^2+a)^(1/2)/a/d/x^2

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 218, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {1251, 960, 730, 724, 206} \[ \frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 a^{3/2} d}+\frac {e^2 \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 d^2 \sqrt {a e^2-b d e+c d^2}}+\frac {e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {a} d^2}-\frac {\sqrt {a+b x^2+c x^4}}{2 a d x^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-Sqrt[a + b*x^2 + c*x^4]/(2*a*d*x^2) + (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*a^(3/
2)*d) + (e*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*Sqrt[a]*d^2) + (e^2*ArcTanh[(b*d - 2
*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2*Sqrt[c*d^2 - b*d*e
+ a*e^2])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 730

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)
*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[(2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e
^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c,
 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0]

Rule 960

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \left (d+e x^2\right ) \sqrt {a+b x^2+c x^4}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x^2 (d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {1}{d x^2 \sqrt {a+b x+c x^2}}-\frac {e}{d^2 x \sqrt {a+b x+c x^2}}+\frac {e^2}{d^2 (d+e x) \sqrt {a+b x+c x^2}}\right ) \, dx,x,x^2\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 d}-\frac {e \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 d^2}+\frac {e^2 \operatorname {Subst}\left (\int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 d^2}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 a d x^2}-\frac {b \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 a d}+\frac {e \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )}{d^2}-\frac {e^2 \operatorname {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x^2}{\sqrt {a+b x^2+c x^4}}\right )}{d^2}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 a d x^2}+\frac {e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {a} d^2}+\frac {e^2 \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2 \sqrt {c d^2-b d e+a e^2}}+\frac {b \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )}{2 a d}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 a d x^2}+\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 a^{3/2} d}+\frac {e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {a} d^2}+\frac {e^2 \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2 \sqrt {c d^2-b d e+a e^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.37, size = 175, normalized size = 0.80 \[ \frac {2 \sqrt {a} \left (\frac {a e^2 \tanh ^{-1}\left (\frac {-2 a e+b d-b e x^2+2 c d x^2}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{\sqrt {a e^2-b d e+c d^2}}-\frac {d \sqrt {a+b x^2+c x^4}}{x^2}\right )+(2 a e+b d) \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 a^{3/2} d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

((b*d + 2*a*e)*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])] + 2*Sqrt[a]*(-((d*Sqrt[a + b*x^2 + c
*x^4])/x^2) + (a*e^2*ArcTanh[(b*d - 2*a*e + 2*c*d*x^2 - b*e*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2
 + c*x^4])])/Sqrt[c*d^2 - b*d*e + a*e^2]))/(4*a^(3/2)*d^2)

________________________________________________________________________________________

fricas [A]  time = 2.93, size = 1414, normalized size = 6.49 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(2*sqrt(c*d^2 - b*d*e + a*e^2)*a^2*e^2*x^2*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*
d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 + 4*sqrt(c*x^4 + b*x
^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)) + (b*c*d^3
 - a*b*d*e^2 + 2*a^2*e^3 - (b^2 - 2*a*c)*d^2*e)*sqrt(a)*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4
 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4) - 4*(a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*sqrt(c*x^4 + b*x^2 + a
))/((a^2*c*d^4 - a^2*b*d^3*e + a^3*d^2*e^2)*x^2), 1/8*(4*sqrt(-c*d^2 + b*d*e - a*e^2)*a^2*e^2*x^2*arctan(-1/2*
sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a
*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) + (b*c*d^3 - a*b*d*e^2 + 2*a^2
*e^3 - (b^2 - 2*a*c)*d^2*e)*sqrt(a)*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2
 + 2*a)*sqrt(a) + 8*a^2)/x^4) - 4*(a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*sqrt(c*x^4 + b*x^2 + a))/((a^2*c*d^4 - a^2
*b*d^3*e + a^3*d^2*e^2)*x^2), 1/4*(sqrt(c*d^2 - b*d*e + a*e^2)*a^2*e^2*x^2*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2
 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*
e)*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2
*d*e*x^2 + d^2)) - (b*c*d^3 - a*b*d*e^2 + 2*a^2*e^3 - (b^2 - 2*a*c)*d^2*e)*sqrt(-a)*x^2*arctan(1/2*sqrt(c*x^4
+ b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) - 2*(a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*sqrt(c*x^
4 + b*x^2 + a))/((a^2*c*d^4 - a^2*b*d^3*e + a^3*d^2*e^2)*x^2), 1/4*(2*sqrt(-c*d^2 + b*d*e - a*e^2)*a^2*e^2*x^2
*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2
- b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) - (b*c*d^3 - a*b*
d*e^2 + 2*a^2*e^3 - (b^2 - 2*a*c)*d^2*e)*sqrt(-a)*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a
)/(a*c*x^4 + a*b*x^2 + a^2)) - 2*(a*c*d^3 - a*b*d^2*e + a^2*d*e^2)*sqrt(c*x^4 + b*x^2 + a))/((a^2*c*d^4 - a^2*
b*d^3*e + a^3*d^2*e^2)*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.49, size = 208, normalized size = 0.95 \[ \frac {\arctan \left (-\frac {{\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} + b d e - a e^{2}}}\right ) e^{2}}{\sqrt {-c d^{2} + b d e - a e^{2}} d^{2}} - \frac {{\left (b d + 2 \, a e\right )} \arctan \left (-\frac {\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}}{\sqrt {-a}}\right )}{2 \, \sqrt {-a} a d^{2}} + \frac {{\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )} b + 2 \, a \sqrt {c}}{2 \, {\left ({\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )}^{2} - a\right )} a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

arctan(-((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 + b*d*e - a*e^2))*e^2/(sqrt(-c*d^2
 + b*d*e - a*e^2)*d^2) - 1/2*(b*d + 2*a*e)*arctan(-(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))/sqrt(-a))/(sqrt(-a)
*a*d^2) + 1/2*((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))*b + 2*a*sqrt(c))/(((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 +
a))^2 - a)*a*d)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 276, normalized size = 1.27 \[ -\frac {e \ln \left (\frac {\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {2 a \,e^{2}-2 d e b +2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x^{2}+\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, d^{2}}+\frac {e \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{2 \sqrt {a}\, d^{2}}+\frac {b \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{4 a^{\frac {3}{2}} d}-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{2 a d \,x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

1/2/d^2*e/a^(1/2)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)-1/2*e/d^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2
)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+d/e)^2*c+(b*e-
2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))-1/2*(c*x^4+b*x^2+a)^(1/2)/a/d/x^2+1/4/d*b/a^(3/2
)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{4} + b x^{2} + a} {\left (e x^{2} + d\right )} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x^2+d)/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*(e*x^2 + d)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{x^3\,\left (e\,x^2+d\right )\,\sqrt {c\,x^4+b\,x^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(d + e*x^2)*(a + b*x^2 + c*x^4)^(1/2)),x)

[Out]

int(1/(x^3*(d + e*x^2)*(a + b*x^2 + c*x^4)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{3} \left (d + e x^{2}\right ) \sqrt {a + b x^{2} + c x^{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(e*x**2+d)/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(1/(x**3*(d + e*x**2)*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________